
INTELLIGENT SYSTEMS (CSE-303-F)

Section B

Rule Based Deduction System

Rule-Based Deduction Systems

The way in which a piece of knowledge is expressed by a human expert
carries important information,
example: if the person has fever and feels tummy-pain then she may have an

infection.

In logic it can be expressed as follows:

 x. (has_fever(x) & tummy_pain(x) has_an_infection(x))

 If we convert this formula to clausal form we loose the content as then we
may have equivalent formulas like:

 (i) has_fever(x) & ~has_an_infection(x) ~tummy_pain(x)

 (ii) ~has_an_infection(x) & tummy_pain(x) ~has_fever(x)

 Notice that:
 (i) and (ii) are logically equivalent to the original sentence

 they have lost the main information contained in its formulation.

Forward production systems

 The main idea behind the forward/backward

production systems is:

 to take advantage of the implicational form in which

production rules are stated by the expert

 and use that information to help achieving the goal.

 In the present systems the formulas have two

forms:

 rules

 and facts

Forward production systems

 Rules are the productions stated in implication form.
 Rules express specific knowledge about the problem.

 Facts are assertions not expressed as implications.

 The task of the system will be to prove a goal formula with these
facts and rules.

 In a forward production system the rules are expressed as F-rules

 F-rules operate on the global database of facts until the termination
condition is achieved.

 This sort of proving system is a direct system rather than a
refutation system.

 Facts
 Facts are expressed in AND/OR form.

 An expression in AND/OR form consists on sub-expressions of
literals connected by & and V symbols.

 An expression in AND/OR form is not in clausal form.

Rule-Based Deduction Systems

Steps to transform facts into AND/OR form for forward system:

1. Eliminate (temporarily) implication symbols.

2. Reverse quantification of variables in first disjunct by
moving negation symbol.

3. Skolemize existential variables.

4. Move all universal quantifiers to the front an drop.

5. Rename variables so the same variable does not occur in
different main conjuncts

- Main conjuncts are small AND/OR trees, not necessarily sum of
literal clauses as in Prolog.

EXAMPLE

 Original formula: u. v. {q(v, u) & ~[[r(v) v p(v)] & s(u,v)]}

 converted formula: q(w, a) & {[~r(v) & ~p(v)] v ~s(a,v)}

Forward production systems

All variables appearing on the final expressions are assumed to be universally quantified.

Conjunction of two main
conjuncts Various variables in conjuncts

Rule-Based Deduction Systems: forward production systems

F-rules
Rules in a forward production system will be applied to the AND/OR graph to

produce new transformed graph structures.

We assume that rules in a forward production system are of the form:

L ==> W,

where L is a literal and W is a formula in AND/OR form.

 Recall that a rule of the form (L1 V L2) ==> W is equivalent to the pair of
rules: L1 ==> W V L2 ==> W.

[barks(fido) & bites(fido)] v ~dog(fido)

barks(fido) & bites(fido) ~dog(fido)

barks(fido) bites(fido)

noisy(fido)

~terrier(fido)

~terrier(z) noisy(z)

goal nodes

R1

R2

{fido/z}

{fido/z}

OR node AND node

•Dog(Fido)

•barks(Fido)

•Not terrier(Fido)\

•Noisy(Fido)

•NOT Dog(Fido)

•Not terrier(Fido)\

We have to prove that
there is X that is noisy.
X=Fido

Or we have to prove that there is
X that X is not a terrier

prove that: “there exists someone
who is not a terrier or who is
noisy.”

We cannot prove
this branch but we
do not have to since
one branch of OR
was proven by
showing Fido

forward production systems

Steps to transform the rules into a free-quantifier form:
1. Eliminate (temporarily) implication symbols.

2. Reverse quantification of variables in first disjunct by moving
negation symbol.

3. Skolemize existential variables.

4. Move all universal quantifiers to the front and drop.

5. Restore implication.

All variables appearing on the final expressions are assumed to be
universally quantified.

E.g. Original formula: x.(y. z. (p(x, y, z)) u. q(x, u))

 Converted formula: p(x, y, f(x, y)) q(x, u).

Skolem
function

Restored
implication

Rule-Based Deduction Systems

A full example:

 Fact: Fido barks and bites, or Fido is not a dog.

 (R1) All terriers are dogs.

 (R2) Anyone who barks is noisy.

Based on these facts, prove that: “there exists someone
who is not a terrier or who is noisy.”

Logic representation:

 (barks(fido) & bites(fido)) v ~dog(fido)

 R1: terrier(x) dog(x)

 R2: barks(y) noisy(y)

 goal: w.(~terrier(w) v noisy(w))

forward production systems

goal

AND/OR Graph for the ‘terrier’ problem:

Rule-Based Deduction Systems: forward production systems

[barks(fido) & bites(fido)] v ~dog(fido)

barks(fido) & bites(fido) ~dog(fido)

barks(fido) bites(fido)

noisy(fido)

~terrier(fido)

~terrier(z) noisy(z)

goal nodes

R1 applied in reverse

R2 applied forward

{fido/z}

{fido/z}

OR node AND node

From facts to goal

B-Rules

We restrict B-rules to expressions of the form: W ==> L,

where W is an expression in AND/OR form and L is a literal,

and the scope of quantification of any variables in the implication is the entire
implication.

Recall that W==>(L1 & L2) is equivalent to the two rules: W==>L1 and W==>L2.

An important property of logic is the duality between assertions and goals in
theorem-proving systems.

Duality between assertions and goals allows the goal expression to be treated as
if it were an assertion.

Conversion of the goal expression into AND/OR form:

1. Elimination of implication symbols.

2. Move negation symbols in.

3. Skolemize existential variables.

4. Drop existential quantifiers. Variables remaining in the AND/OR form are
considered to be existentially quantified.

Goal clauses are conjunctions of literals and the disjunction of these clauses is the
clause form of the goal well-formed formula.

Backward production systems

Example 1 of formulation of Rule-Based Deduction Systems

1. Facts:

 dog(fido)

 ~barks(fido)

 wags-tail(fido)

 meows(myrtle)

Rules:

 R1: [wags-tail(x1) & dog(x1)] friendly(x1)

 R2: [friendly(x2) & ~barks(x2)] ~afraid(y2,x2)

 R3: dog(x3) animal(x3)

 R4: cat(x4) animal(x4)

 R5: meows(x5) cat(x5)

Suppose we want to ask if there are a cat and a dog such
that the cat is unafraid of the dog.

 The goal expression is:

 x. y.[cat(x) & dog(y) & ~afraid(x,y)]

We treat the goal expression
as an assertion

x. y.[cat(x) & dog(y) & ~afraid(x,y)]

dog(fido)

[cat(x)

R2

meows(x5=myrtle)

x=x5

dog(y) ~afraid(x,y)]

R5

Y=Fido

[friendly(x2) ~barks(x2)

~barks(x2=fido)

wags-tail(x1) dog(x1)]

X1=Fido

dog(fido)

R1

R2

wags-tail(fido)

X1=Fido

Rule-Based Deduction Systems

2. The blocks-word situation is described by the following set of wffs:

 on_table(a) clear(e)

 on_table(c) clear(d)

 on(d,c) heavy(d)

 on(b,a) wooden(b)

 heavy(b) on(e,b)

The following statements provide general knowledge about this blocks
word:

 Every big, blue block is on a green block.

 Each heavy, wooden block is big.

 All blocks with clear tops are blue.

 All wooden blocks are blue.

Represent these statements by a set of implications having single-literal
consequents.

Draw a consistent AND/OR solution tree (using B-rules) that solves the
problem: “Which block is on a green block?”

Homework: formulation of Rule-Based Deduction Systems

HOMEWORK Problem 2. Transformation of

rules and goal:

Facts:

 f1: on_table(a) f6: clear(e)

 f2: on_table(c) f7: clear(d)

 f3: on(d,c) f8: heavy(d)

 f4: on(b,a) f9: wooden(b)

 f5: heavy(b) f10: on(e,b)

Rules:

 R1: big(y1) ^ blue(y1) green(g(y1)) Every big, blue block is on a green block.

 R2: big(y0) ^ blue(y0) on(y0,g(y0)) “ “ “ “ “ “ “ “ “

 R3: heavy(z) ^ wooden(z) big(z) Each heavy, wooden block is big.

 R4: clear(x) blue(x) All blocks with clear tops are blue.

 R5: wooden(w) blue(w) All wooden blocks are blue.

Goal:

 green(u) ^ on(v,u) Which block is on a green block?

HOMEWORK PROBLEM 3. Information Retrieval

System

 We have a set of facts containing personnel data for a business
organization

 and we want an automatic system to answer various questions about
personal matters.

 Facts

 John Jones is the manager of the Purchasing Department.

 manager(p-d,john-jones)

 works_in(p-d, joe-smith)

 works_in(p-d,sally-jones)

 works_in(p-d,pete-swanson)

 Harry Turner is the manager of the Sales Department.

 manager(s-d,harry-turner)

 works_in(s-d,mary-jones)

 works_in(s-d,bill-white)

 married(john-jones,mary-jones)

Rule-Based Deduction Systems

Rules

 R1: manager(x,y) works_in(x,y)

 R2: works_in(x,y) & manager(x,z) boss_of(y,z)

 R3: works_in(x,y) & works_in(x,z) ~married(y,z)

 R4: married(y,z) married(z,y)

 R5: [married(x,y) & works_in(p-d,x) insured_by(x,eagle-corp)

With these facts and rules a simple backward production system can

answer a variety of questions.

Build solution graphs for the following questions:

1. Name someone who works in the Purchasing Department.

2. Name someone who is married and works in the sales department.

3. Who is Joe Smith’s boss?

4. Name someone insured by Eagle Corporation.

5. Is John Jones married with Sally Jones?

person
place

person

In this company married
people should not work in
the same department

Planning

 Planning is fundamental to “intelligent” behavior. E.g.

 - assembling tasks - route finding

 - planning chemical processes - planning a report

 Representation

 The planner has to represent states of the world it is operating

within, and to predict consequences of carrying actions in its

world. E.g.

 initial state: final state:

a

b c
d

on(a,b)
on(b,table)
on(d,c)
on(c,table)
clear(a)
clear(d)

on(a,b)
on(b,c)
on(c,d)
on(d,table)
clear(a)

a

b

d

c

Planning

 Representing an action

 One standard method is by specifying sets of preconditions

and effects, e.g.

 pickup(X) :

 preconditions: clear(X), handempty.

 deletlist: on(X,_), clear(X), handempty.

 addlist: holding(X).

Planning

 The Frame Problem in Planning
 This is the problem of how to keep track in a representation of the

world of all the effects that an action may have.

 The action representation given is the one introduced by STRIPS
(Nilsson) and is an attempt to a solution to the frame problem

 but it is only adequate for simple actions in simple worlds.

 The Frame Axiom
 The frame axiom states that a fact is true if it is not in the last delete

list and was true in the previous state.

 The frame axiom states that a fact is false if it is not in the last add list
and was false in the previous state.

Planning

 Control Strategies

 Forward Chaining

 Backward Chaining

 The choice on which of these strategies to

use depends on the problem, normally

backward chaining is more effective.

Planning

Example:

Initial State

 clear(b), clear(c), on(c,a), ontable(a), ontable(b), handempty

Goal

 on(b,c) & on(a,b)

Rules

R1: pickup(x) R2: putdown(x)

 P & D: ontable(x), clear(x), P & D: holding(x)

 handempty A: ontable(x), clear(x), handempty

 A: holding(x)

R3: stack(x,y) R4: unstack(x,y)

 P & D: holding(x), clear(y) P & D: on(x,y), clear(x), handempty

 A: handempty, on(x,y), clear(x) A: holding(x), clear(y)

c

a b

a

a

c

b

Planning

on(c,a)
clear(c)
handempty unstack(c,a)

 putdown(c)

pickup(b)

 stack(b,c)

pickup(a)

 stack(a,b)

holding(c)

clear(a)

clear(c)

handempty
ontable(b)
clear(b)

holding(b)

handempty

on(b,c)

clear(b)

ontable(a)

holding(a)

on(a,b)

TRIANGLE TABLE {unstack(c,a), putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b)}

0

1

2

3

4

5

6

c

a b
d a

c

b

Conditions
for action

goal

{unstack(c,a), putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b)}

Initial situation

next situation

Planning
Homework and exam exercises
1. Describe how the two SCRIPS rules pickup(x) and stack(x,y) could be combined

into a macro-rule put(x,y).

What are the preconditions, delete list and add list of the new rule.

 Can you specify a general procedure for creating macro-rules components?

1. Consider the problem of devising a plan for a kitchen-cleaning robot.

 (i) Write a set of STRIPS-style operators that might be used.

 When you describe the operators, take into account the following considerations:

 (a) Cleaning the stove or the refrigerator will get the floor dirty.

 (b) The stove must be clean before covering the drip pans with tin foil.

 (c) Cleaning the refrigerator generates garbage and messes up the

 counters.

 (d) Washing the counters or the floor gets the sink dirty.

 (ii) Write a description of an initial state of a kitchen that has a dirty stove,
refrigerator, counters, and floor.

(The sink is clean, and the garbage has been taken out).

Also write a description of the goal state where everything is clean, there is no trash, and the
stove drip pans have been covered with tin foil.

